Articles from the center, those using its research, and faculty associated with the center.
Sattari, A., K. Jafarzadegan, and H. Moradkhani (2024), Enhancing streamflow predictions with machine learning and Copula-Embedded Bayesian model averaging, Journal of Hydrology, doi: 10.1016/j.jhydrol.2024.131986.
Radfar, S., H. Moftakhari, and H. Moradkhani (2024), Rapid intensification of tropical cyclones in the Gulf of Mexico is more likely during marine heatwaves, Communications Earth & Environment, 5, 421, doi: 10.1038/s43247-024-01578-2.
Rabby, S.H., L. Rahimi, E. Ahmadisharaf, M. Ye, J.A. Garwood, E.S. Bourque, and H. Moradkhani (2024), Dynamic Disparities in Nitrogen and Phosphorus Fluxes into Estuarine Systems Under Different Flow Regimes and Streamflow Droughts, Water Research, doi: 10.1016/j.watres.2024.122238.
Han, X., A. Roy, P. Moghaddasi, H. Moftakhari, N. Magliocca, M. Mekonnen, and H. Moradkhani (2024), Assessment of climate change impact on rainfed corn yield with adaptation measures in Deep South, US, Agriculture, Ecosystems & Environment, doi: 10.1016/j.agee.2024.109230.
Moghaddasi, P., K. Gavahi, H. Moftakhari, and H. Moradkhani (2024), Unraveling the Hydropower Vulnerability to Drought in the United States, Environmental Research Letters, doi: 10.1088/1748-9326/ad6200.
Miao, C., J. Hu, H. Moradkhani, and G. Destouni (2024), Hydrological Research Evolution: A Large Language Model-Based Analysis of 310,000 Studies Published Globally Between 1980 and 2023, Water Resources Research, doi: 10.1029/2024WR038077.
Radfar, S., S. Mahmoudi, H. Moftakhari, T. Meckley, M. V. Bilskie, R. Collini, K. Alizad, J. A. Cherry, and H. Moradkhani (2024), Nature-based solutions as buffers against coastal compound flooding: Exploring potential framework for process-based modeling of hazard mitigation, Science of The Total Environment, doi: 10.1016/j.scitotenv.2024.173529.
Mahmoudi, S., H. Moftakhari, D. F. Muñoz, W. Sweet, and H. Moradkhani (2024), Establishing flood thresholds for sea level rise impact communication, Nature Communications, doi: 10.1038/s41467-024-48545-1.
Foroumandi, E., K. Gavahi, and H. Moradkhani (2024), Generative adversarial network for real-time flash drought monitoring: A deep learning study, Water Resources Research, doi: 10.1029/2023WR035600.
Shojaeezadeh, S. A., M. Al-Wardy, M. R. Nikoo, M. Ghorbani Mooselu, M. R. Alizadeh, J. F. Adamowski, H. Moradkhani, N. Alamdari, and A. H. Gandomi (2024), Soil erosion in the United States: Present and future (2020–2050), CATENA, doi: 10.1016/j.catena.2024.108074.
Dey, H., W. Shao, H. Moradkhani, B. Keim, and B. Peter (2024), Urban Flood Susceptibility Mapping Using Frequency Ratio and Multiple Decision Tree‑based Machine Learning Models, Natural Hazards, doi:10.1007/s11069-024-06609-x
Boumis, G., H. Moftakhari, and H. Moradkhani (2024), A MetastatisticalFrequency Analysis of Extreme Storm Surge Hazard Along the US Coastline, Coastal Engineering Journal, doi:10.1080/21664250.2024.2338323
Moftakhari, H., D. F. Muñoz, A. Akbari Asanjan, A. Aghakouchak, H. Moradkhani, and D. A. Jay (2024), Nonlinear Interactions of Sea-Level Rise and Storm Tide Alter Extreme Coastal Water Levels: How and Why?, AGU Advances, doi:10.1029/2023AV000996
Gomez, FJ., K. Jafarzadegan, H. Moftakhari, and H. Moradkhani (2024), Probabilistic Flood Inundation Mapping through Copula Bayesian Multi-Modelling of Precipitation Products, Natural Hazards and Earth System Sciences, doi:10.5194/nhess-2024-26
Muñoz, D., H. Moftakhari, and H. Moradkhani (2024), Quantifying Cascading Uncertainty in Compound Flood Modeling with Linked Process-based and Machine Learning Models, Hydrology and Earth System Sciences, doi:10.5194/hess-2024-9